翻訳と辞書 |
Polyakov formula : ウィキペディア英語版 | Polyakov formula In differential geometry and mathematical physics (especially string theory), the Polyakov formula expresses the conformal variation of the zeta functional determinant of a Riemannian manifold. The corresponding density is local, and therefore is a Riemannian curvature invariant. In particular, whereas the functional determinant itself is prohibitively difficult to work with in general, its conformal variation can be written down explicitly. ==References==
*
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Polyakov formula」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|